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Addendum to ‘‘Random population dispersal in a linear hostile environment’’

S Harris*
College of Engineering and Applied Sciences and Marine Sciences Research Center, SUNY, Stony Brook, New York 117

~Received February 28 2002; published 24 September 2002!

We extend the previous results, describing the population dispersal that occurs in some insects and small
animal populations when this process is not strictly random, by including both the downgradient diffusion and
the full Pearl-Verhulst logistic growth term in the equation of evolution. Motivated by the increasing fragmen-
tation of natural habitats that is the result of human activities, we consider a finite habitat surrounded by a
hostile environment. Previous work@Phys Rev. E62, 4032~2000!# considered only the case of an unbounded
habitat, obviating issues concerned with the critical habitat size and the adoption of strategies best suited to
achieve lower densities by dispersal through downgradient diffusion.
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I. INTRODUCTION

Dispersal of insects and small animals occurs due t
combination of factors whose interplay is still not well u
derstood@1#. A number of laboratory and field studies o
different insect species@2# and small animals@3# indicated
the need for a reassessment of the then existing mathema
descriptive paradigm. The latter was based on the Fis
equation@4# and successfully used in the seminal work
Skelam@5# describing the dispersal of muskrats and also o
trees. In that descriptive framework dispersal is treated a
purely random process, described by simple diffusion,
the population densityn(x,t) is assumed to evolve accordin
to

]

]t
n5D0

]2

]x2 n1b~12n/N!, ~1!

i.e., through a superposition of diffusion and a logistic, Pe
Verhulst~PV!, growth term. HereD0 is the diffusion coeffi-
cient, b is the growth rate, andN is the habitat carrying
capacity; in what follows we scalen to N.

A conclusion that followed from the studies cited abo
was that in some species dispersion is not solely due to
dom movement, but that it is at least partly due to a desir
lower the local density. This confers some advantages r
tive to increased survival, e.g., it results in equilibrium de
sities below the carrying capacity providing a buffer in t
event resources, which for some reason are diminished
also, it reduces competition for resources in single spe
habitats.

A number of approaches to modifying Eq.~1! have been
taken to describe a more nuanced view of the dispersal
cess. A common feature of these approaches is the rep
ment of the fluxj 52D0(]/]x)n with a density-dependen
diffusion coefficientD(n)2 that increases withn so that dif-
fusion is enhanced, where the density is high-favoring dow
gradient diffusion. This introduces a second nonlinearity i
Eq. ~1!, which itself remains unsolved except for the stea
state case in a finite habitat@5#, and the pertubative@6# and
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the special@7# traveling wave solutions for an infinite hab
tat. Here we will considerD5D01D1n. This diffusion
model follows from an analysis of lion-ant dispersal in
laboratory setting@8,9# and has also been postulated
purely theoretical grounds as describing biased random
tion @10#. Previous work@9–12# which has only considered
the case of an unbounded habitat, has with a single excep
@13# takenD050. When the PV growth term is replaced wit
a linear Malthusian growth term@9–11# this allows the re-
sulting generalization of Eq.~1! to be transformed into an
equation previously studied and solved in connection w
the flow in a porous medium@14#. NeglectingD0 was justi-
fied in the case of lion-ant dispersal@9# for which this term
was shown to be small except near the dispersal front in
infinite space being considered. Traveling wave solutions
the case whereD5Dana together with the generalized PV
growth termbnv(12n) have also been studied@12#.

As humans expand the range of their activities the fr
mentation of natural habitats has become all too comm
This provides the motivation here for considering disper
in a finite habitat surrounded by a hostile environment.
retain both the full PV growth term and takeD5D0
1D1n, since near the boundaries atx50, L where the den-
sity becomes vanishingly small, theD0 term can become
dominant and cannot be neglecteda priori. Since the equa-
tion we will need to consider is analytically more comple
than Eq. ~1!, it is unlikely that an exact solution can b
found. However, we are able to obtain an approximate so
tion through the use of a technique applied earlier to Eq.~1!
@15#. The solution found here does shows the expected qu
tative behavior, particularly in the case of the equilibriu
solution which is reduced from that for the case of pure
random dispersal. In the following section we first descri
then apply the method of solution. A discussion of the so
tion found then follows in Sec. III.

II. FORMULATION AND SOLUTION

As discussed above, we consider

]

]t
n5D0

]2

]x2 nxx1D1@~nx!
21nnxx#1bn~12n!, ~2!
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wheren has been normalized toN andD1 here and in what
follows has a factorN21 incorporated into it. The habita
size is L and the boundary conditions aren(0,t)5n(L,t)
50, where for reasons of simplicity we consider dispersa
only one dimension. The method of solution that we emp
here is similar to that used in obtaining normal solutions
the Boltzmann equation@16# and has been described in det
previously @15#. Briefly, we ignore the fact that Fourie
analysis is intended to apply to linear equations@17# and
look for solutions of the form

n~x,t !5( An~ t !sin~npx/L !, ~3!

where An(t)5An„A1(t)…, n52,3,... . As in the case of th
Boltzmann equation, we do not necessarily expect such
cial solutions to be accurate at very short times; this depe
on the nature of the initial condition. In the context of th
Boltzmann equation, this is known as initial slip@18,19#.

Substitution of Eq.~3! into Eq. ~2!, followed by multipli-
cation by sin(npx/L), and then integration overx lead to
equations for theAn ; for n51, we find

d

dt
A15A1@b2D0~p/L !2#2A1

2@~4pD1/3L2!1~8b/3p!#

1O~A1A2 ,A1A3 ,...,A2
2,A2A3 ,...!

[A1K111A1
2K121¯ . ~4!

Assuming for simplicity that the initial condition is symme
ric aboutx5L/2, so thatA2n50, the equation for the remain
ing An is

d

dt
An5An@b2D0~pn/L !2#1

A1
2

n~n22!~n12!
@8b/p

1~4pD1 /L2!~n222!1~8pD1 /L2!#

1~higher-order terms!

[AnKn11A1
2Kn21~higher-order terms!, ~5!

where here and below ‘‘higher-order terms’’ denotes ter
that are of the same form~with differing numerical coeffi-
cients! as those shown explicitly in Eq.~4!.

In order to close these equations, we make use of
assumed functional dependence of theAn for n.1 to rewrite
Eq. ~5! using the substitutions

d

dt
An5

d

dA1
An

d

dt
A1 ~6!

and

An5an1A11an2A1
21¯ , ~7!

so that
03290
n
y
o

e-
ds

s

e

d

dt
An5~an1A112an2A1

21¯ !~A1K111A1
2K121¯ !

5~an1A11an2A1
21¯ !Kn11

21A1
2Kn21¯ . ~8!

It follows that An5O(A1
2), so that toO(A1

2) we have

A1~ t !5
K11A1~0!

@K111K12A1~0!#e2K11t2K12A1~0!
. ~9!

For n.1 theAn can be found to any desired order inA1
from Eqs.~4–8! and, as noted above, it is immediately a
parent from comparison of theO(A1) terms on either side o
Eq. ~5! that an150, so that all of the terms indicated a
‘‘higher order’’ are at least ofO(A1

3), and for small values of
A1 can be neglected on intermediate and long time scales
which dependence on initial data is weak. Further, we
determine the higher approximations to any desired orde
A1 through the simple algorithm that follows directly from
Eq. ~8!, e.g., equating terms ofO(A1

2), we find

an25
Kn2

2K112Kn1
, n53,5,... . ~10!

This indicates that the coefficients of the presumed smallA1
2

terms become smaller with increasingn asn21; it can also
be verified thatan3 , an4 ,... also decrease with increasingn
so that Eq.~9! provides a good qualitative description subje
to the restrictions noted earlier (A1 small, times for which
dependence on the initial data is weak!.

III. DISCUSSION

There are two qualitative features of the solution that f
low ‘‘by inspection’’ from Eq. ~9!. First, if D0 is identically
zero there is no critical habitat size below which an init
population becomes extinct. This is intuitive; as the popu

FIG. 1. 102A1eq versus the purposeful dispersal.D1 /D0 for
Lc /L50.99 ~top curve!, Lc /L50.95 ~middle curve!, and Lc /L
50.90 ~bottom curve!.
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tion falls diffusion to the boundary decreases allowing
interior population to recover sufficiently to avoid extinctio
and a stable@20# equilibrium with A1(`)5uK11/K12u is es-
tablished@21#. WhenD0Þ0 the population can become e
tinct if D0 is too large regardless of the value ofD1 ; the
critical length is Lc5p(D0 /b)1/2, unchanged from tha
when dispersal is solely due to random movement. It a
follows from Eq. ~9! that when a surviving equilibrium
population is established, increasing nonrandom dispe
i.e., increasing D1 , will decrease population densitie
throughout the habitat thereby reducing vulnerability to
possibility of resource shortages.
,
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In Fig. 1, we illustrate the interplay betweenD0 andD1
~the latter normalized byN! for several values ofLc /L. If
the ratio D1 /D0 is considered as a measure of purpose
dispersal, we see from Fig. 1 that the degree to which
occurs must increase as the habitat size becomes larger
tive to the critical length in order to achieve the same p
ferred density limit. The most effective strategy to follow
doing this would be to decrease random dispersal, which
only increases purposeful dispersal but also decreasesLc as
well. This is more effective than the other available altern
tive, decreasing the birth rate, which is also likely to be mo
strongly influenced by factors unrelated to dispersal.
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